AP Chem Ch. 5 Study Sheet 6

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- A 5-ounce cup of raspberry yogurt contains 6.0 g of protein, 2.0 g of fat, and 26.9 g of carbohydrate. The fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively. The fuel value of this cup of yogurt is ______ kJ.
 - A 640
 - **B** 830
 - © 600
 - D 720
 - **(E)** 72
- The average fuel value of sugars is 17 kJ/g. A
 2.0 L pitcher of sweetened Kool-Aid contains
 400 g of sugar. What is the fuel value (in kJ) of
 a 500 mL serving of Kool-Aid? (Assume that
 the sugar is the only fuel source.)
 - (A) 4.2×10^4
 - (B) 1.7×10^3
 - \bigcirc 1.7 × 10⁶
 - (D) 1.7×10^2
 - E 17
- 3) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J?
 - A 1.00
 - (B) 100×10^2
 - © 10.0
 - (D) 1.00×10^3
 - E 50.0
- 4) When a system _____, ΔE is <u>always</u> negative.
 - (A) absorbs heat and does work
 - (B) gives off heat and does work
 - © absorbs heat and has work done on it
 - D gives off heat and has work done on it
 - (E) none of the above is <u>always</u> negative.

- 5) Which one of the following is an endothermic process?
 - (A) ice melting
 - (B) water freezing
 - © boiling soup
 - D Hydrochloric acid and barium hydroxide are mixed at 25°C: the temperature increases.
 - (E) Both A and C
- 6) Which one of the following is an exothermic process?
 - (A) ice melting
 - (B) water evaporating
 - ^(C) boiling soup
 - (D) condensation of water vapor
 - (E) Ammonium thiocyanate and barium hydroxide are mixed at 25°C: the temperature drops.
- 7) Of the following, which one is a state function?
 - A H
 - ₿ q
 - [©] w
 - D heat
 - (E) none of the above
- 8) Which of the following is a statement of the first law of thermodynamics?
 - (A) $E_k = \frac{1}{2}mv^2$
 - (B) A negative ΔH corresponds to an exothermic process.
 - $\textcircled{C} \quad \Delta E = E_{\text{final}} E_{\text{initial}}$
 - D Energy lost by the system must be gained by the surroundings.
 - E 1 cal = 4.184 J (exactly)
- 9) The units of of heat capacity are _____.
 - (A) K/J or $^{\circ}C/J$
 - (B) J/K or $J/^{\circ}C$
 - ⓒ J/g-K or J/g-°C
 - D J/mol
 - E g-K/J or g-°C/J

- 10) The units of of specific heat are _____.
 A K/J or °C/J

 - ℂ J/g-K or J/g-°C
 - D J/mol
 - (E) g-K/J or $g-^{\circ}C/J$
- 11) The British thermal unit (Btu) is commonly used in engineering applications. A Btu is defined as the amount of heat required to raise the temperature of 1 lb of water by 1°F. There are ______ joules in one Btu. 1 lb = 453.59 g; °C = (5/9)(°F - 32°); specific heat of H₂O (l) = 4.184 J/g-K.
 - A 3415
 - B 60.29
 - © 1054
 - (D) 5.120×10^{-3}
 - (E) Additional information is needed to complete the calculation.
- 12) A sample of calcium carbonate [CaCO₃ (s)] absorbs 45.5 J of heat, upon which the temperature of the sample increases from 21.1°C to 28.5°C. If the specific heat of calcium carbonate is 0.82 J/g-K, what is the mass (in grams) of the sample?
 - A 3.7
 - **B** 5.0
 - © 7.5
 - D 410
 - € 5.0 x 10³
- 13) An 8.29 g sample of calcium carbonate [CaCO₃ (s)] absorbs 50.3 J of heat, upon which the temperature of the sample increases from 21.1°C to 28.5°C. What is the specific heat of calcium carbonate?
 - A .63
 - B .82
 - © 1.1
 - D 2.2
 - ① 4.2

- 14) A sample of iron absorbs 67.5 J of heat, upon which the temperature of the sample increases from 21.5°C to 28.5°C. If the specific heat of iron is 0.450 J/g-K, what is the mass (in grams) of the sample?
 - A 4.3
 - B 11
 - © 21
 - D 1100
 - E) 1.1 x 10³
- 15) A 22.44 g sample of iron absorbs 180.8 J of heat, upon which the temperature of the sample increases from 21.1°C to 39.0°C. What is the specific heat of iron?
 - (A) 0.140
 - B 0.450
 - © 0.820
 - D 0.840
 - **(E)** 0.900
- 16) Which of the following is a statement of Hess's law?
 - (A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
 - (B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
 - \bigcirc The Δ H for a process in the forward direction is equal in magnitude and opposite in sign to the Δ H for the process in the reverse direction.
 - **(D)** The Δ H for a process in the forward direction is equal to the Δ H for the process in the reverse direction.
 - (E) The ΔH of a reaction depends on the physical states of the reactants and products.

- 17) The energy released by combustion of 1 g of a substance is called the _____ of the substance.
 - (A) specific heat
 - (B) fuel value
 - © nutritional calorie content
 - D heat capacity
 - (E) enthalpy
- 18) Fuel values of hydrocarbons increase as the H/C atomic ratio increases. Which of the following compounds has the highest fuel value?
 - $\bigcirc C_2H_6$
 - $\textcircled{B} \quad C_2H_4$
 - $\bigcirc C_2H_2$
 - ① CH₄
 - E C₆H₆
- 19) The specific heat capacity of liquid water is4.18 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of water from 25.1°C to 65.3°C?
 - A 48.1
 - B 840
 - \bigcirc 1.89 × 10³
 - D 2.08 × 10⁻²
 - E 54.4
- 20) The specific heat capacity of methane gas is 2.20 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of methane from 36.0°C to 75.0°C?
 - A 88.6
 - B 429
 - © 1221
 - D 0.0113
 - E 22.9

21) The specific heat capacity of liquid mercury is 0.14 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of mercury from 15.0°C to 36.5°C?

- (A) 7.7×10^2
- B 15
- © 36
- D 0.0013
- ① 1.7

- 22) A 6.50-g sample of copper metal at 25.0°C is heated by the addition of 84.0 J of energy. The final temperature of the copper is _____°C. The specific heat capacity of copper is 0.38 J/g-K.
 - A 29.9
 - B 25.0
 - © 9.0
 - D 59.0
 - ④ 34.0