Chapter 6 Electronic Structure of Atoms: Worksheet #2

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1) At what speed (m/s) must a 10.0 mg object be moving to have a de Broglie wavelength of 3.3 $\times 10^{-41}$ m?
 - (A) 4.1
 - (B) 1.9×10^{-11}
 - (C) 2.0×10^{12}
 - (D) 3.3 × 10⁻⁴²
 - (E) 1.9×10^{13}
- 2) The quantum number defines the shape of an orbital.
 - (A) spin
 - (B) magnetic
 - © principal
 - (D) azimuthal
 -) psi
- 3) There are _____ orbitals in the third shell.
 - (A) 25
 - (B) 4
 - © 9
 - D 16
 - (Ē) 1
- 4) The ______ subshell contains only one orbital.
 - (A) 5d
 - (B) 6f
 - (C) 4s
 - (D) 3d
 - (E) 1p
- 5) The n = 1 shell contains р orbitals. All the other shells contain ___ p orbitals.
 - (A) 3, 6
 - (B) 0, 3
 - © 6, 2
 - D 3, 3
 - (E) 0, 6

- 6) The lowest energy shell that contains f orbitals is the shell with n =.
 - (A) 3
 - (B) 2
 - © 4
 - (D) 1
 - (Ē) 5
- 7) The total number of orbitals in a shell is given
 - by
 - (A) $\overline{I^2}$
 - (B) n^2
 - (C) 2n
 - (D) 2n + 1
 - (E) 21 + 1
- 8) In a hydrogen atom, an electron in a orbital can absorb a photon, but
 - cannot emit a photon.
 - (A) 3s
 - (B) 2s
 - © 3p
 - (D) 1s
 - (E) 3f
- 9) How many quantum numbers are necessary to designate a particular electron in an atom?
 - (A) 3
 - (B) 4
 - © 2
 - (D) 1
 - (E) 5
- 10) A orbital is degenerate with a $5d_z^2$ in a many-electron atom.
 - (A) 5p_z
 - (B) $4d_z^2$
 - © 5s
 - (D) 5d_{xy}
 - (E) 4d_{zz}

- 11) The 3p subshell in the ground state of atomic xenon contains ______ electrons.
 - A 2
 - B 6
 - ⑦ 8⑦ 10
 - E 36
- 12) There are _____ unpaired electrons in a ground state phosphorus atom.
 - (A) 0
 - **B** 1
 - © 2
 - (D) 3
 - **E** 4
- 13) There are _____ unpaired electrons in a ground state fluorine atom.
 - $\bigcirc 0$
 - **B** 1
 - © 2
 - D 3
 - **E** 4
- 14) Which is the correct ground-state electron configuration for silver?
 - (A) $[Kr]5s^24d^9$
 - (B) [Kr]5s¹4d¹⁰
 - © [Kr]5s²4d¹⁰
 - \mathbb{D} [Xe]5s²4d⁹
 - (E) [Xe]5s¹4d¹⁰
- 15) All of the _____ have a valence shell electron configuration ns^1 .
 - (A) noble gases
 - (B) halogens
 - (C) chalcogens
 - D alkali metals
 - (E) alkaline earth metals

- 16) The elements in the _____ period of the periodic table have a core-electron configuration that is the same as the electron configuration of neon.
 - (A) first
 - (B) second
 - [©] third
 - D fourth
 -) fifth
- 17) The largest principal quantum number in the ground state electron configuration of iodine is
 - (A) 1
 - (B) 4
 - © 5
 - (D) 6
 - **(E)** 7
- 18) Elements in group _____ have a np⁶ electron configuration in the outer shell.
 - A 4A
 - **B** 6A
 - © 7A
 - 1 8A
 - Ē 5A
- 19) Which one of the following is correct?
 - (A) $v + \lambda = c$
 - (B) $v \div \lambda = c$
 - $\bigcirc v = cv$
 - (D) $\lambda = cv$
 - (E) $v\lambda = c$
- 20) The photoelectric effect is _____
 - (A) the total reflection of light by metals giving them their typical luster
 - (B) the production of current by silicon solar cells when exposed to sunlight
 - © the ejection of electrons by a metal when struck with light of sufficient energy
 - (D) the darkening of photographic film when exposed to an electric field
 - (E) a relativistic effect

- 21) A radio station broadcasts at 103.5 MHz. The wavelength of the signal is _____ m.
 (A) 3.10
 - B 2.90
 - © 4.71
 - D 2.75
 - (E) 3.84
- 22) According to the Heisenberg Uncertainty Principle, it is impossible to know precisely both the position and the _____ of an electron.
 - (A) mass
 - (B) color
 - (C) momentum
 - (D) shape
 - (E) charge
- 23) The uncertainty principle states that
 - (A) matter and energy are really the same thing
 - (B) it is impossible to know anything with certainty
 - © it is impossible to know the exact position and momentum of an electron
 - D there can only be one uncertain digit in a reported number
 - (E) it is impossible to know how many electrons there are in an atom
- 24) All of the orbitals in a given electron shell have the same value of the _____ quantum number.
 - (A) principal
 - (B) azimuthal
 - ^(C) magnetic
 - D spin
 -) psi
- 25) Which of the subshells below do <u>not</u> exist due to the constraints upon the azimuthal quantum number?
 - (A) 2d
 - B 2s
 - © 2p
 - ① all of the above
 - (E) none of the above

- 26) An electron cannot have the quantum numbers
 - n =_____, l =_____, $m_l =$
 - A 2, 0, 0
 - ₿ 2, 1, **-**1
 - © 3, 1, -1
 - D 1, 1, 1
 - € 3, 2, 1
- 27) In a p_x orbital, the subscript x denotes the of the electron.
 - (A) energy
 - (B) spin of the electrons
 - © probability of the shell
 - D size of the orbital
 - (E) axis along which the orbital is aligned
- 28) The _____ orbital is degenerate with 5p_y in a many-electron atom.
 - (A) 5s
 - B 5px
 - © 4p_y
 - \bigcirc 5d_{xy}
 - E 5d²
- 29) At maximum, an f-subshell can hold

electrons, a d-subshell can hold electrons, and a p-subshell can

- hold ______ electrons.
- A 14, 10, 6
- **B** 2, 8, 18
- © 14, 8, 2
- D 2, 12, 21
- E) 2, 6, 10

30) Which electron configuration represents a violation of the Pauli exclusion principle?

31) Which one of the following is the correct electron configuration for a ground-state nitrogen atom?

32) Which electron configuration denotes an atom in its ground state?

- 33) The ground state electron configuration of Fe is .
 - (A) $1s^22s^23s^23p^63d^6$
 - (B) $1s^22s^22p^63s^23p^63d^64s^2$
 - $\bigcirc 1s^22s^22p^63s^23p^64s^2$
 - (D) $1s^22s^22p^63s^23p^64s^24d^6$
 - (E) $1s^22s^23s^23p^{10}$
- 34) The ground-state electron configuration of
 - _____ is [Ar]4s¹3d⁵.
 - A V
 - (B) Mn
 - C Fe
 - D Cr
 - ΈK

35) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

- 36) The lowest orbital energy is reached when the number of electrons with the same spin is maximized. This statement describes
 - A Pauli Exclusion Principle
 - B Planck's constant
 - ^(C) deBroglie hypothesis
 - D Heisenberg Uncertainty Principle
 - (E) Hund's rule
- 37) Which of the following elements has a ground-state electron configuration different from the predicted one?
 - (A) Cu
 - (B) Ca
 - ① Xe
 - D Cl
 - ₿ Ti

- 38) The valence shell of the element X contains 2 electrons in a 5s subshell. Below that shell, element X has a partially filled 4d subshell. What type of element is X?
 - (A) main group element
 - (B) chalcogen
 - © halogen
 - D transition metal
 - (E) alkali metal