Chapter 6 Electronic Structure of Atoms: Worksheet #1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1) Electromagnetic radiation travels through vacuum at a speed of _____ m/s.
 - A 186,000
 - B 125
 - (C) 3.00×10^8
 - D 10,000
 - (E) It depends on wavelength.
- 2) The wavelength of light that has a frequency of $1.20 \times 10^{13} \text{ s}^{-1}$ is _____ m.
 - A 25.0
 - (B) 2.50×10^{-5}
 - © 0.0400
 - D 12.0
 - (E) 2.5
- Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation is _____ MHz.
 - A 500
 - B 200
 - © 50
 - D 20
 - E) 2.0
- 4) What is the frequency (s⁻¹) of electromagnetic radiation that has a wavelength of 0.53 m?
 (A) 5.7 × 10⁸
 - (A) $5.7 \times 10^{\circ}$
 - (B) 1.8×10^{-9}
 - \bigcirc 1.6 × 10⁸
 - (D) 1.3×10^{-33}
 - (E) 1.3×10^{33}
- 5) The energy of a photon of light is

_____ proportional to its frequency and proportional to its wavelength.

- A directly, directly
- (B) inversely, inversely
- © inversely, directly
- D directly, inversely
- (E) indirectly, not

- 6) Of the following, _____ radiation has the shortest wavelength.
 - (A) X-ray
 - (B) radio
 - (C) microwave
 - (D) ultraviolet
 - (E) infrared
- 7) The wavelength of a photon that has an energy of 5.25×10^{-19} J is m.
 - (A) 3.79×10^{-7}
 - $\textcircled{B} 2.64 \times 10^6$
 - \bigcirc 2.38 × 10²³
 - D 4.21 × 10⁻²⁴
 - (E) 3.79×10^7
- 8) The energy of a photon that has a wavelength of 9.0 m is J.
 - (A) 2.2 × 10⁻²⁶
 - (B) 4.5×10^{25}
 - \bigcirc 6.0 × 10⁻²³
 - (D) 2.7×10^9
 - € 4.5 × 10⁻²⁵
- 9) The frequency of a photon that has an energy of 3.7×10^{-18} J is s⁻¹.
 - (A) 5.6×10^{15}
 - B 1.8 × 10⁻¹⁶
 - \bigcirc 2.5 × 10⁻¹⁵
 - D 5.4 × 10⁻⁸
 - (E) 2.5×10^{15}
- 10) A mole of red photons of wavelength 725 nm has _____ kJ of energy.
 - (A) 2.74×10^{-19}
 - **B** 4.56 × 10⁻⁴⁶
 - \bigcirc 6.05 × 10⁻³
 - D 165
 - **(E)** 227

- 11) It takes 254 kJ/mol to eject electrons from a certain metal surface. What is the longest wavelength of light (nm) that can be used to eject electrons from the surface of this metal via the photoelectric effect?
 - A 471
 - B 233
 - © 165
 - D 725
 - (E) 552
- 12) Of the following, _____ radiation has the longest wavelength and _____ radiation has the greatest energy.

gamma ultraviolet visible

- (A) ultraviolet, gamma
- (B) visible, ultraviolet
- © gamma, gamma
- D visible, gamma
- (E) gamma, visible
- 13) What color of visible light has the longest wavelength?
 - (A) blue
 - (B) violet
 - © red
 - D yellow
 - (E) green
- 14) What color of visible light has the highest energy?
 - (A violet
 - B blue
 - © red
 - D green
 - (E) yellow
- 15) Which one of the following is considered to be ionizing radiation?
 - (A) visible light
 - (B) radio waves
 - © X-rays
 - D microwaves
 - (E) infrared radiation

- 16) Of the following transitions in the Bohr hydrogen atom, the ______ transition results in the emission of the highest-energy photon.
 - $(A) \quad n = 1 \rightarrow n = 6$
 - (B) $n = 6 \rightarrow n = 1$
 - $\bigcirc n = 6 \rightarrow n = 3$

 - $\textcircled{E} \quad n = 1 \rightarrow n = 4$
- 17) Using Bohr's equation for the energy levels of the electron in the hydrogen atom, determine the energy (J) of an electron in the n = 4 level.
 (A) -1.36 × 10⁻¹⁹
 (B) -5.45 × 10⁻¹⁹
 - (b) -5.45×10^{-10}
 - \bigcirc -7.34 × 10¹⁸
- 18) An electron in a Bohr hydrogen atom has an energy of -1.362×10^{-19} J. The value of n for this electron is
 - A 1
 - **B** 2
 - © 3
 - (D) 4
 - Ē 5
- 19) A spectrum containing only specific wavelengths is called a ______ spectrum.
 - (A) line
 - (B) continuous
 - © visible
 - (D) Rydberg
 - (E) invariant
- 20) The deBroglie wavelength of a particle is given
 - by _____ $(A) \quad h + mv$
 - $(A) \quad n + mv$
 - B hmv
 - $\bigcirc h/mv$
 - $\bigcirc mv/c$
 - E mv