AP MULTIPLE CHOICE QUESTIONS CH. 20, SET 2

1994 36.

$Zn(s) + Cu^{2+} \iff Zn^{2+} + Cu(s)$

An electrolytic cell based on the reaction represented above was constructed from zinc and copper half-cells. The observed voltage was found to be 1.00 volt instead of the standard cell potential, E° , of 1.10 volts. Which of the following could correctly account for this observation?

60.

- (A) The copper electrode was larger than the zinc electrode.
- (B) The Zn^{2+} electrolyte was $Zn(NO_3)_2$, while the Cu^{2+} electrolyte was $CuSO_4$.
- (C) The Zn^{2+} solution was more concentrated than the Cu^{2+} solution.
- (D) The solutions in the half cells had different volumes.
- (E) The salt bridge contained KCl as the electrolyte.
- **50.** Which of the following acids can be oxidized to form a stronger acid?
 - $(A) \qquad H_3PO_4 \qquad \qquad (D) \qquad H_3BO_3$
 - $(B) HNO_3 (E) H_2SO_3$
 - (C) H_2CO_3

63. What is the maximum mass of copper that could be plated out by electrolyzing aqueous $CuCl_2$ for 16.0 hours at a constant current of 3.00 amperes? (1 faraday = 96,500 coulombs)

- (A) 28 grams (D) 114 grams
- (B) 57 grams (E) 128 grams
- (C) 64 grams

1989

- **25.** The simplest formula for an oxide of nitrogen that is 36.8 percent nitrogen by weight is
 - (A) N_2O (D) N_2O_3
 - (B) NO (E) N_2O_5
 - (C) NO_2

 $6I^{-} + 2MnO_{4}^{-} + 4H_{2}O(l) \rightarrow 3I_{2}(s) + 2MnO_{2}(s) + OH^{-}$

Which of the following statements regarding the reaction by the equation above is correct?

- (A) Iodide ion is oxidized by hydroxide ion.
- (B) MnO_4 is oxidized by iodide ion.
- (C) The oxidation number of manganese changes from +7 to +2.
- (D) The oxidation number of manganese remains the same.
- (E) The oxidation number of iodide ion changes from -1 to 0.

22.

20.

$$\underline{Cr_2O_7^{2-}} + \underline{e^-} + \underline{H^+} \rightarrow \underline{Cr^{3+}} + \underline{H_2O(l)}$$

When the equation for the half-reaction above is balanced with the lowest whole-number coefficients, the coefficient for H_2O is

(A) 2 (B) 4 (C) 6 (D) 7 (E) 14

53. Which of the following must be true for a reaction that proceeds spontaneously from initial standard state conditions?

- (A) $\Delta G^{o} > 0$ and $K_{eq} > 1$
- (B) $\Delta G^{\circ} > 0$ and $K_{eq} < 1$
- (C) $\Delta G^{\circ} < 0$ and $K_{eq} > 1$
- (D) $\Delta G^{\circ} < 0$ and $K_{eq} < 1$

(E)
$$\Delta G^{\circ} = 0$$
 and $K_{eq} = 1$

- $Fe^{2^{+}} + 2e^{-} \rightarrow Fe (s) \qquad E^{o}_{red} = -0.44 \text{ volt}$ $Ni^{2^{+}} + 2e^{-} \rightarrow Ni (s) \qquad E^{o}_{red} = -0.23 \text{ volt}$ The standard reduction potentials for two halfreactions are given above. The Nernst equation for a galvanic cell at 25°C in which Fe (s) reduces Ni²⁺ is the following $E = E_{o} - (0.059/2) \log[Fe^{2^{+}}]/[Ni^{2^{+}}]$ What is the equilibrium constant for the reaction $Fe (s) + Ni^{2^{+}} \rightarrow Fe^{2^{+}} + Ni (s)$ (A) 1.9 x 10⁻²³ (D) 1.3 x 10⁺⁷ (B) 1.3 x 10⁺⁷
 - (B) 7.6 x 10⁻⁸ (C) 3.6 x 10⁺³
 (E) $5.2 \times 10^{+22}$