AP MULTIPLE CHOICE QUESTIONS CH. 17, SET 2

1994

- 55. What volume of 0.150-molar HCl is required to neutralize 25.0 mL of 0.120-molar Ba(OH)₂?
 - 20.0 mL (A) (D) 60.0 mL 80.0 mL (E)
 - **(B)** 30.0 mL 40.0 mL
 - (C)
- 65. Barium sulfate is LEAST soluble in a 0.01-molar solution of which of the following?
 - (A) $Al_2(SO_4)_3$ (D) NH₃
 - **(B)** $(NH_4)_2SO_4$ (E) BaCl₂
 - (C) Na₂SO₄

1984

63.

	Acid Dissociation
Acid	<u>Constant, K_a</u>
H_3PO_4	$7 \ge 10^{-3}$
$H_2PO_4^-$	8 x 10 ⁻⁸
HPO_4^{2-}	$5 \ge 10^{-13}$
··· 41 1: 6.41	··· ··· · · · · · · · · · · · · · · ·

On the basis of the information above, a buffer with a pH=9 can best be made by using

- pure NaH₂PO₄ (A)
- **(B)** $H_3PO_4 + H_2PO_4$
- $H_2PO_4^- + PO_4^{3-}$ (C)
- $H_2PO_4^- + HPO_4^{2-}$ (D)

(E)
$$HPO_4^{2-} + PO_4^{3-}$$

- 74. How many moles of NaF must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25°C to reduce the $[Pb^{2+}]$ to 1 x 10⁻⁶ molar? $(K_{sp} \text{ of } PbF_2 \text{ at } 25^{\circ}C = 4.0 \text{ x } 10^{-8})$
 - (A) 0.020 mole 0.20 mole (D)
 - **(B)** 0.040 mole **(E)** 0.40 mole
 - (C) 0.10 mole
- 73. A 27.0-gram sample of an unknown hydrocarbon was burned in excess oxygen to form 88.0 grams of carbon dioxide and 27.0 grams of water. What is a possible molecular formula of the hydrocarbon?
 - (A) CH_4 (D) C_4H_6
 - C_2H_2 (E) **(B)** C_4H_{10}
 - (C) C_4H_3

1989

Ouestions 8 – 10

- (A) a solution with a pH less than 7 that is not a buffer solution
- a buffer solution with a pH between 4 and 7. **(B)**
- a buffer solution with pH between 7 and 10. (C)
- a solution with a pH greater than 7 that is (D) not a buffer solution.
- (E) a solution with a pH of 7 **Ionization Constants:** $CH_3COOH = 1.8 \times 10^{-5}$ $NH_3 = 1.8 \times 10^{-5}$ H₂CO₃ $K_1 = 4 \times 10^{-7}$

$$K_2 = 4 \times 10^{-11}$$

- 8. A solution prepared to be initially 1M in NaCl and 1 M in HCl
- A solution prepared to be initially 1 M in Na₂CO₃ 9. and 1 M in CH₃COONa.
- 10. A solution prepared to be initially 0.5 M in CH₃COOH and 1 M in CH₃COONa.