AP MULTIPLE CHOICE QUESTIONS CH. 13, SET 3

1999

- 33. A 1.0 L sample of an aqueous solution contains 0.10 mol of NaCl and 0.10 mol of CaCl₂. What is the minimum number of moles of AgNO₃ must be added to the solution in order to precipitate all of the Cl⁻ as AgCl (s)? (Assume that AgCl is insoluble)
 - (A) 0.10 mol
- (D) 0.40 mol
- (B) 0.20 mol
- (E) 0.60 mol
- (C) 0.30 mol
- 52. Under which of the following sets of conditions could the most O_2 (g) be dissolved in H_2O (l)?

	Pressure of O_2 (g)	1 emperature
	above $H_2O(1)$	of $H_2O(1)$
	<u>(atm)</u>	(°C)
(A)	5.0	80
(B)	5.0	20
(C)	1.0	80
(D)	1.0	20
(E)	0.5	20

- 70. When 100 mL of 1.0 M Na₃PO₄ is mixed with 100 mL of 1.0 M AgNO₃, a yellow precipitate forms and the silver concentration becomes negligibly small. Which of the following is a correct listing of the ions remaining in solution in order of increasing concentration?
 - (A) $[PO_4^3] < [NO_3] < [Na^+]$
 - (B) $[PO_4^{3-}] < [Na^+] < [NO_3^-]$
 - (C) $[NO_3] < [PO_4^3] < [Na_1^+]$
 - (D) $[Na^+] < [NO_3^-] < [PO_4^{3-}]$
 - (E) $[Na^+] < [PO_4^{3-}] < [NO^{3-}]$
- 75. Which of the following pairs of liquids forms the solution that is most ideal (most closely follows Raoult's Law)?
 - (A) C_8H_{18} (l) and H_2O (l)
 - (B) $CH_3CH_2CH_2OH$ (l) and H_2O (l)
 - (C) $CH_3CH_2CH_2OH$ (l) and C_8H_{18} (l)
 - (D) C_6H_{14} (l) and C_8H_{18} (l)
 - (E) H_2SO_4 (l) and H_2O (l)

42. Mass of an empty container = 3.0 grams

Mass of container + solid sample = 25.0 grams

Volume of the solid sample = 11.0 cm³

The data above were gathered in order to determine the density of an unknown solid. The density of the

sample should be reported as (A) 0.5 g/cm³

(D) 2.00 g/cm^3

(B) 0.50 g/cm^3

(E) 2.27 g/cm^3

(C) 2.0 g/cm^3

53. If 87 g of K₂SO₄ (molar mass 174 g) is dissolved in enough water to make 250 mL of solution, what are the concentrations of the potassium and the sulfate ions?

	$[\underline{K}^{+}]$	$[SO_4^{2-}]$
(A)	0.020 M	0.020M
(B)	1.0 M	2.0 M
(C)	2.0 M	1.0 M
(D)	2.0 M	2.0 M
(E)	4.0 M	2.0 M

57. Molecules that have planar configurations include which of the following?

I. BCl₂
II. CHCl₃
III. NCl₃

- (A) I only
- (D) II and III only
- (B) III only
- (E) I, II, and III
- (C) I and II only

1994

- 33. A hydrocarbon gas with an empirical formula CH₂ has a density of 1.88 grams per liter at 0°C and 1.00 atm. A possible formula for the hydrocarbon is
 - (A) CH_2
- (B) C_2H_4
- (C) C_3H_6
- (D) C_4H_8
- (E) C_5H_{10}