Here's why you should know this.



**38**. Data collected during the titration of a 20.0 mL sample of a 0.10 *M* solution of a monoprotic acid with a solution of NaOH of unknown concentration are plotted in the graph above. Based on the data, which of the following are the approximate  $pK_a$  of the acid and the molar concentration of the NaOH?

|   | $pK_a$ | [NaOH]    | First, you know the $[NaOH] = 0.10 M$ because at the                                                               |
|---|--------|-----------|--------------------------------------------------------------------------------------------------------------------|
|   |        |           | equivalence point, the same volume (20.0 mL) of NaOH                                                               |
| A | 4.7    | 0.050 M   | is used as the volume of acid, which you've been told is $0.10 M$ . Second, it's important to remember that at the |
| R | 47     | 0 10 M    |                                                                                                                    |
| D | /      | 0.10 11   | halfway point of the titration, the $pH = pK_a$ of the weak                                                        |
| С | 9.3    | 0.050 M   | acid. At the halfway point, $[HA] = [A^{T}]$ . Plugging that                                                       |
| ) | · · ·  | 0.000.000 | in to the $K_a$ formula, you'll see that $[H^+] = K_a$ , therefore                                                 |
| D | 9.3    | 0.10 M    | at the halfway point, the $pK_a = pH$                                                                              |
|   |        |           |                                                                                                                    |